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We propose a Bayesian procedure to cluster temporal gene expression microarray profiles, based on a mixed-effect smoothing-
spline model, and design a Gibbs sampler to sample from the desired posterior distribution. Our method can determine the
cluster number automatically based on the Bayesian information criterion, and handle missing data easily. When applied to a
microarray dataset on the budding yeast, our clustering algorithm provides biologically meaningful gene clusters according to a
functional enrichment analysis.
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1. INTRODUCTION

Microarray technology enables the scientist to measure the
mRNA expression levels of thousands of genes simultane-
ously. For a particular species of interest, one can make
microarray measurements under many different conditions
and for different types of cells (if it is a multicellular or-
ganism). Genes’ expression profiles under these conditions
often give the scientist some clues on biological roles of
these genes. A group of genes with similar profiles are often
“coregulated” or participants of the same biological func-
tions.

When a series of microarray experiments are conducted
sequentially during a biological process, we call the resulting
dataset a “temporal” microarray dataset, which can provide
insights on the underlying biology and help decipher the
dynamic gene regulatory network. Clustering genes with
similar temporal profiles is a crucial first step to reveal
potential relationships among the genes.

Conventional clustering methods, such as the K-means
and hierarchical clustering, do not take into consideration
the correlation in the gene expression levels over time.
Although it is possible to use a general multivariate Gaussian
model to account for the correlation structure, such a model
ignores the time order of the gene expressions. As evidenced
in our example, the time factor is important in interpreting

the results of gene expression clustering in temporal data. It
is also possible to use an autoregression model to describe the
gene expression time series, but such a model often requires
stationarity, which is unlikely to hold in most temporal
microarray data.

Recently, nonparametric analysis of data in the form of
curves, that is, functional data, is subject to active research,
see [1, 2] for a comprehensive treatment of functional data
analysis; and curve-based functional clustering methods have
emerged [3–7], but a rigorous assessment of the estimation
precision is still lacking.

In this paper, we propose a Bayesian clustering method,
which optimally combines the available information and
provides a proper uncertainty measure for all estimated
quantities. Our method is based on a mixture of mixed-effect
smoothing splines models. For each cluster, we model its
mean profile as a smoothing spline function and describe its
individual gene’s variation by a parametric random effect.
Based on the theory of reproducing-kernel Hilbert spaces
[8], we represent the mean expression curve as a linear
combination of certain basis functions, which enables us to
derive the full posterior distribution up to a normalizing
constant. All the conditional distributions needed by a Gibbs
sampler are also easy to compute and to sample from. Our
method automatically takes care of the missing data and
infers the number of clusters in the data. Using the method,
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Figure 1: A smoothing-spline mixed effect model for temporal gene
expression.

we analyzed a microarray dataset of budding yeast, we found
that the majority of the clusters we had obtained are enriched
for known and expected biological functions.

Our method is not restricted to temporal microarray
data, and can be applied to all curve clustering problems,
especially for sparsely and irregularly sampled temporal data.

2. MATERIAL AND METHODS

2.1. Mixed-effect representation of
gene expression profile

Let the expression value of the ith gene at time t be yit.
To accommodate missing data that occasionally occurs in
microarray experiment, we denote ti = (t1, . . . , tni) and yi =
(yi1, . . . , yini)

T , where ni is the number of measurements of
ith gene. Our mixed-effect smoothing spline model [9] for
genes in one cluster is

yi = μ
(

ti
)

+ Zibi + εi, (1)

where μ(ti) = (μ(t1), . . . μ(tni))T is the cluster’s mean profile,
bi∼N(0,B) is the random effect to capture the intragene
correlation, Zi is the known design matrix for the random
effect, and εi∼N(0, σ2I) is the random error independent of
b and of each other.

By taking different b vectors, we can accommodate
different nonrandom effects. For example, when bi = bi and
Zi = 1, the expression profile of the ith gene is parallel to
the mean profile μ (Figure 1). If bi = (bi1, bi2)T and Zi =
(1, ti), the difference between the ith gene profile and the
mean profile is a linear function in time. More complicated
structures such as periodicity can be modeled by letting the
Zi be basis of a certain functional space.

By considering μ in a reproducing kernel Hilbert space
H ⊆ {μ : M(μ) < ∞} in which M(μ) is a square seminorm,
we can represent μ as

μ(t) =
m∑

ν=1

dνφν(t) +
q∑

i=1

cjRM
(
s j , t
)
, t ∈ [0, a], (2)

where {s j} is a set consisting of all distinct {ti}, q is the
number of {s j}, and RM is the kernel of H . The choice of

M(μ) = ∫ a
0 (d2μ/dt2)2

dt yields the cubic smoothing spline
with

φ1(t) = 1, φ2(t) = t, (3)

RM
(
t1, t2

) =
∫ a

0

(
t1 − u

)
+

(
t2 − u

)
+du, (4)

where (·)+ = max(·, 0) [10].
Writing (2) in a vector-matrix form, we have

μ(ti) = Sidi + Rici, (5)

where Si is ni×m with the (i, ν)th entry φν(ti) and R is ni× q
with the (i, j)th entry RM(ti, s j). Substituting (5) into (1), we
have

yi = Sidi + Rici + Zibi + εi. (6)

Denoting y = (yT
1 , . . . , yT

n )T and S, R, Z, ε similarly, we have
the matrix representation

y = Sd + Rc + Zb + ε, (7)

where b = (bT
1 , . . . , bT

n )T ∼N(0, diag(B, . . . ,B)).
The prior distributions are specified as follows:

d∼N
(
0, diag

(
δ1, . . . , δm

))
,

c∼N
(
0, τ2I

)
,

σ2∼ IG
(
ασ2 ,βσ2

)
,

τ2∼ IG
(
ατ2 ,βτ2

)
,

B∼ IW
(
ν0, S−1

0

)
,

(8)

where IG and IW are inverse-Gamma and inverse-Wishart
distributions, respectively.

These priors lead to the following full conditional
posteriors, which are used in our Gibbs sampler:
[

d | b, c, σ2, δ, y
]∼N

(
VdST(y − Rc− Zb)/σ2,Vd

)
,

[
c | d, b, σ2, τ2, y

]∼N
(
VcRT(y − Sd− Zb)/σ2,Vc

)
,

[
b | d, c, σ2,B, y

]∼N
(
VbZT(y − Sd− Rc)/σ2,Vb

)
,

[B | b]∼ IW
(

ν0 + n,
(
S0 +

n∑

i=1

bibT
i

)−1)
,

[τ2 | c]∼ IG
(
ατ2 + (q −m)/2,βτ2 + cTc/2

)
,

[σ2 | d, b, c, y]∼ IG
(
ασ2 + n/2,βσ2 + SSR

)
,

(9)

where Vd = (STS/σ2 +diag(δ−1
1 , . . . , δ−1

m ))−1, Vb = (ZTZ/σ2 +
diag(B−1, . . . ,B−1))−1, Vc = (RTR/σ2 + 1/τ2I)−1, and SSR =
(y − Sd− Rc− Zb)T(y − Sd− Rc− Zb).

2.2. The mixture model with unknown
number of components

When more than one cluster is considered, we assume
that the expression of the ith gene has a Gaussian mixture
distribution:

yi∼p1N
(
μ1,Σ1

)
+ · · · + pKN

(
μK ,ΣK

)
, (10)
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where μk and Σk = ZBkZT +σ2I are the mean and covariance
matrix for the kth component, as given by (7); pk is the
fraction of kth component, and K is the number of Gaussian
components.

2.3. Class labels and cluster numbers

To ease the computation, we introduce a “latent” member-
ship labeling variable Ji for the ith gene so that

yi | Ji = j∼N
(
μ j ,Σ j

)
. (11)

When the number of Gaussian components K is known, we
can get the joint posterior probability as

P(J,μ,Σ | y) = π(μ,Σ)
n∏

i=1

pjiN
(

yi | μ ji
,Σ ji

)
, (12)

where J = ( j1, . . . , jn), μ = (μ1, . . . ,μK ), Σ = (Σ1, . . . ,ΣK ),
and π(μ,Σ) is the joint prior distribution.

Since K is unknown, we used the following Bayesian
information criterion (BIC):

BIC = −2 log p
(

y |MK , θ̂K
)

+ lK logn, (13)

where MK is the current model with parameters θK , θ̂K
is the estimate, and lK is the total number of parameters
in our model. A small BIC score indicates the adequacy
of the corresponding model. An alternative to our current
approach (i.e., each clustering configuration is equally likely
given the number of clusters K , and K is determined by
BIC) is to use a Polya Urn prior (also called the “Chinese
restaurant” process), which postulates that when a new
member comes in, its a priori probability for joining an
existing cluster of size mi is (mi + c)/(m + c), and for
forming a new cluster of its own is c/(m + c), where m is
the total number of existing members. This prior, however,
favors unbalanced cluster configurations (e.g., very large and
very small clusters) and may not be appropriate in our
applications.

2.3.1. Gibbs Sampling from the Posterior

To complete our Bayesian analysis, we employ the Dirichlet
prior Di (α1, . . . ,αK ) for (p1, . . . , pK ), the cluster propor-
tions. Thus, given the cluster indicator J, the posterior
distribution of the p’s is again a Dirichlet distribution.

Given μ1, . . . ,μK ,B1, . . . ,BK , σ2, we have the conditional
distribution of Ji:

p
(
Ji = j | μ1, . . . ,μK ,B1, . . . ,BK , σ2, y

)

=
pjN

(
yi | μ j ,ZBjZT + σ2I

)

∑K
k=1pkN

(
yi | μk,ZBkZT + σ2I

) .
(14)

With an initial value of J, which gives rise to a partition of
y : (yJ

1, . . . , yJ
K ), and the initial values of dk, bk, ck , Bk, where

k = 1, . . . ,K , as well as σ2, we iterate the following iterative
conditional sampling steps:

(i) for i = 1, . . . ,n, draw a new ji from the conditional
distribution from (14) to replace the old one;

(ii) conditional on J, sequentially

(a) update dk by a draw from [dk | bk, ck, σ2, δ, yJ
k],

where k = 1, . . . ,K ,
(b) update bk from [bk | dk, ck, σ2,Bk, yJ

k], where k =
1, . . . ,K ,

(c) update ck from [ck | dk, bk, σ2, τ2
k , yJ

k], where k =
1, . . . ,K ,

(d) update Bk ∼ [Bk | bk], and τ2
k∼[τ2

k | ck], where
k = 1, . . . ,K ,

(e) update σ2∼ [σ2 | d, b, c, y],
(f) update (p1, . . . , pK )∼Di(n1 + α1, . . . ,nK + αK ),

where nj is the number of genes in the jth cluster.

3. RESULTS AND DISCUSSION

To study oxygen-responsive gene network, Lai et al. [11] used
cDNA microarray to monitor the gene expression changes
of wild-type budding yeast (Saccharomyces cerevisiae) under
aerobic condition in galactose medium. Under aerobic
condition, the oxygen concentration was lowered gradually
until oxygen was exhausted during a period of ten minutes.
Microarray experiments were conducted at 14 time points
under aerobic condition. A reference sample was obtained
from a pooled RNA collected from all time points for
hybridization.

For the analysis, Lai et al. [11] normalized gene expres-
sion after time 0 to gene expression of time 0 to set the
common starting point. They identified 2388 genes whose
expression is differentially expressed at one or more time
points. Using our method, 2388 genes was clustered to 31
clusters, which yields the smallest BIC. FunSpec [12] was
used for gene annotation and biological function enrichment
analysis, where the Bonferroni-corrected functional enrich-
ment P-values based on hypergeometric distributions are
reported. We found 23 clusters out of 31 clusters discovered
have biological functions over-represented. Among them,
estimated mean gene expression profiles of three clusters are
given in Figure 2.

In cluster A, which consists of 40 genes, the estimated
mean expression goes up progressively as oxygen level goes
down, which suggests that the genes in this cluster were
transiently upregulated in response to aerobisis. Accordingly,
genes involved in stress response (function enrichment P-
value = 10−4) as well as cell rescue and defense are over-
represented in this cluster (function enrichment P-value
= 10−4). Furthermore, genes involved in molecular functions
of oxidoreductase and coproporphyrinogen oxidase are also
presented, which explains the upregulation of the gene
expression levels.

We have 92 genes in cluster B, where the estimated
mean gene expression drops down at the beginning rapidly
and then goes up gradually. In this cluster, 34 genes are
involved in protein synthesis (function enrichment P-value
≤ 10−14). Moreover, ribosome biogenesis are also over-
represented (function enrichment P-value ≤ 10−14). These
processes were affected by oxygen level initially, but were
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Figure 2: Estimated mean expression curves for cluster A, B, and
C (from top to bottom) discovered in the yeast aerobic expression
data.

quickly adjusted to high expression levels to maintain living
of yeast.

Contrast to cluster B, cluster C (68 genes) consists
of genes involved in galactose fermentation (function
enrichment P-value = 10−4), carbon utilization (functional
enrichment P-value = 10−2), and carbohydrate metabolism
(function enrichment P-value ≤ 10−10). The initial upreg-
ulation of gene expression under aerobic condition can be
partly explained by the fact that the cell increases the energy
uptaking through the carbon utilization as oxygen level goes
down; but as the oxygen level continues to drop down,
these processes are replaced by the more energy-efficient
processes, which drives the expression levels of genes to be
downregulated.

4. CONCLUSIONS

Conventional clustering methods do not take into consid-
eration the correlation in the gene expression levels over
time. Multivariate Gaussian models and time series analysis

cannot model the time factor and correlation properly.
These limitations can be readily overcome by the full
Bayesian approach developed here. Although certain prior
distributions and the related hyperparameters need to be
input by the user, we found the clustering results rather
robust to variations in such inputs. Moreover, our Bayesian
clustering algorithm serves as a platform to incorporate more
biological knowledge. Open source R code is available at
www.stat.uiuc.edu/∼pingma/BayesianFDAClust.htm.
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